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Purpose. Disposition of drugs among compartments of the body usu-
ally occurs at changing rates that are commonly modeled as sums of
exponential terms with different rate constants. This paper describes
an alternative, Gompertz kinetics, in which the rates can change sys-
tematically.
Methods. Differential equations were developed and solved that fit
typical examples taken from the literature. The three or four con-
stants required for a visually satisfactory fit to data could readily be
found by successive adjustment “by hand,” but strategies and results
are presented for computer fitting of the data.
Results. In four examples, the amount remaining in the blood de-
creases as an exponentially declining fraction of the amount present
at any moment, but the antecedent processes responsible for that
amount differ as follows: (a) In simple i.v. disposition (e.g., lidocaine)
concentration falls as a decelerated exponential decay. (b) Delayed
i.v. disposition (e.g., hexobarbital) requires, as well, a decelerated
exponential growth function. (c) In simple disposition after oral ad-
ministration, the concentration in the blood initially increases at a
decelerating rate. (d) In biphasic oral disposition (e.g., Li+ carbon-
ate), the initial Gompertz growth is followed by decelerated expo-
nential decay.
Conclusions. Gompertz kinetics provides an accurate and parsimo-
nious mathematical model describing drug disposition.

KEY WORDS: drug disposition; Gompertz kinetics; noncompart-
mental analysis.

INTRODUCTION

Pharmacokinetics is concerned with the mathematical
description of the way substances introduced into the body
are distributed (1). The concentration of a substance is moni-
tored in blood samples taken at intervals after oral or intra-
venous (i.v.) delivery to the subject. The disposition of in-
fused or ingested substances does not proceed at a constant
rate of loss from the circulation, but instead the rate changes
with time. Commonly, this change is modeled by sums of
simple exponential terms intended to correspond to real or
imagined spaces or compartments of the body (2).

In this study, pharmacokinetic phenomena are described
in terms of Gompertz kinetics (3-7). The special feature of
Gompertz kinetics is that, when appropriate, the rate coeffi-
cient, r, of an exponential process, y(t), is allowed to change
exponentially during the process. So, in general, ±dy/dt � ry,
where ±dr/dt � kt. Thus, in the models for drug disposition,
the change in the rate of change of drug concentration is built
into the original differential equations.

METHODS

As a modeling tool, Gompertz kinetics is not generally
well known except by researchers concerned with growth and
survival of organisms. Derivations of the equations used in
the present unconventional application to four examples of
drug disposition are therefore shown in some detail (see
Table I for differential equations and their solutions).

Fit of Equations to Data

The model is validated by direct fit of the equations to
published data of other authors. With practice, one can obtain
in a few minutes excellent fits “by hand.” For example, the
original figure, scanned into the WINDOWS PAINT pro-
gram (Microsoft), can be matched against successively ad-
justed predictions in MATHCAD (MATHSOFT) until a vi-
sually satisfactory fit is obtained. The present results, how-
ever, without reference to the hand-fit estimates, were
obtained by means of SCIENTIST (MicroMath), which al-
lows user specification of the mathematical function. Like
many programs, it finds the constants by maximizing the sum
of the squares of the differences between prediction and data.

Data were obtained by digitization of the points from
enlargements of published figures. Disposition curves are
commonly plotted as logarithm of concentration in the blood
versus time, but for curve fitting, the digitizing software was
allowed to transform the data back to arithmetical scale.

For each example, suggestions are given for finding rea-
sonable initial values for the fitting program. In general, if
there are more than three free parameters, fix the rest for the
first run and then release them successively thereafter. In this
way, the best fit can usually be found after only three or four
trials, each of which requires a second or less of computer
time. Best-fit parameter values for figures, listed in Table II,
were obtained with routines shown in Table III.

Models for Intravenous Administration

Simple i.v. Disposition (Fig. 1)

When a substance is introduced directly into the blood-
stream by i.v. injection, the diffusion gradient of the substance
between blood and tissues is initially infinitely high. Not sur-
prisingly then, the initial concentration in the blood decreases
rapidly as the substance quickly succumbs to the host of spe-
cific and nonspecific affinities in its environment. The rate of
removal from the circulation during this process is propor-
tional to the amount present, i.e., is exponential, according to
the differential equation:

−dy��dt = y� � r� (1)
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ABBREVIATIONS: Plain lower-case symbols stand for decelerated
growth (as y, r, k), primed symbols for decelerated decay (r�, r�, k�);
r, specific rate of change of concentration � dy/y·dt; primed, r�, when
associated with decrease (at t � 0, r � ro, and r� � r�o); k, specific
rate at which r changes with time � dr/rdt; b � ro/k; yo, initial level
of substance in blood; y, concentration of substance during deceler-
ated growth; y�, for decelerated decay; ym, level (theoretical) of y as
t → � (y�m for y�); R, rate of exponential decline of substance in the
blood; K, rate constant for exponential decay of R; W(t), time course
of disposition of substance; Cp � W � concentration of substance in
the plasma; i.v., intravenous.
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The rate r� decreases toward zero (Fig. 1, panel r�), as the
concentration falls toward a finite level (Fig. 1, panel y�).
Thus, r� in Eq. 1 is not constant, as it would be in a simple
exponential decay function; instead it decreases with time,
and Eq. 1 represents decelerated exponential decay (with
primed y� to distinguish from growth, plain y). The coefficient
r� decreases exponentially:

−dr��dt = r� � k� and r� = r�o � exp�−k� � t� (2A,B)

and where k� is the rate of decrease of the specific decay rate, r�.
When Eq. 2B is substituted into Eq. 1, and the result

integrated between the initial value y�o at to � 0 and y� at t,
we obtain (Fig. 1, panel y�) the solution to Eq. 1:

y� = y�o � exp�−�r�o − r�)�k� (3)

Functioning by itself, the process represented by Eq. 3
would bring the concentration down to a level, y�m, defined
by setting t → � in Eq. 3. The further reduction that actually
occurs is due to slower but simultaneous metabolic and ex-

Table I. Differential Equations and Their Solutions in Gompertz Model of Drug Dispositiona

Differential equation Solutions

Simple exponential decay, dR/dt � −KR R � exp(−K � t) (Eq. 4)
Decelerated exponential growth

dy/dt � y � r (Eq. 7A) y � exp((ro − r)/k) (Eq. 8)
where −dr/dt � r � k (Eq. 7B) where r � roexp(−kt)

Decelerated exponential decay,
−dy�/dt � y� � r� (Eq. 1) y� � exp(−(r�o − r�)/k�) (Eq. 3)
where −dr�/dt � r� � k� (Eq. 2A) where r� � r�oexp(−k� t)

Simple i.v. Fig. 1,
−dCp/dt � Cp(r� + K) (Eq. 6) Cp � Co � y� � R (Eq. 5)

Delayed i.v. Fig. 2,
−dCp/dt � Cp(r� − r + K) (Eq. 9A) Cp � Co � y� � y � R (Eq. 9)

Simple oral Fig. 3,
dCp/dt � Cp (r − K) (Eq. 10A) Cp � Co � y � R (Eq. 10)

Biphasic oral Fig. 4,
dCp/dt � Cp(r − r� − K) (Eq. 9A) Cp � Co � y � y� � R (Eq. 11A)

a Prime, as in y� (t), indicates the equation or parameter concerns decelerated decay, in contrast to
unadorned y(t), concerned with decelerated growth.

Fig. 1. Simple disposition after intravenous injection (lidocaine).
Top: points digitized from Fig. 1 of Thomson et al. (8) and then
transformed to arithemtical scale. Line fit by Eq. 5. Bottom: r� (Eq.
2AB) drives y� (Eq. 1, 3), which in turn is decreased by simple ex-
ponential decay (Eq. 4), R(t), to yield W(t).

Fig. 2. Delayed disposition after intravenous injection (hexobarbi-
tal). Points digitized from Fig. 15b of van Rossum et al. (2), after
Breimer (9). Top: arthmetical plot of disposition, Eq. 9, W(t). Bot-
tom: disposition, W(t), is determined by decelerated exponential de-
cay (Eq. 3), y� driven by r� (lower left), and growth, y driven by r (Eq.
8), together with simple exponential decay R (Eq. 4).
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cretory processes recruited to dispose of the substance. Their
collective action diminishes the concentration by the expo-
nentially decreasing fraction, R (Fig. 1, panel R):

R = exp�−K � t� (4)

Thus the net concentration, W, at any time is the product of
y� (Eq. 3) and R (Eq. 4; Fig. 1, panel W):

W = y� � R (5)

The differential equation for the entire process can be ob-
tained from the first derivative of Eq. 5:

dW�dt = �dt��dt� R + (dr�dt�y� = −y� r�R − KRy� (5A)

In conventional symbolism, and to emphasize the initial
decrease in concentration, Cp, the drug in plasma:

−dCp�dt = Cp �r� + K� (6)

Equation 6 states that, in simple i.v. disposition, the con-
centration of the drug in the blood decreases in proportion to
decreasing rate r� and constant rate K.

Figure 1 shows graphically the Gompertz model ad-
dressed specifically to prediction of the disposition of injected
lidocaine. The points were digitized and transformed from an
enlargement of the original Fig. 1 of Thomson et al. (8). On
the points in arithmetic scale has been superimposed the
“best fit” obtained by machine fitting. Equally satisfactory
conformity of prediction and data has been obtained with
other similar instances from other sources.

Figure 1 displays (lower panels) the components: r� de-
fines the proportional diminishment of y� (Eqs. 2B, 3), which
is acted on by R, signaling final disposition. Parameter initial
estimates for computer fitting of Fig. 1:

Co: datum value at t � 0
K: estimate from logarithm of terminal limb of data plot
r�o: estimate from specific slope at t � 0 (Fig. 1A)
k: any small positive value (say, 1).

Delayed i.v. Disposition (Fig. 2)

The initial phase of delayed i.v. disposition (Fig. 2) is
described by Eq. 3, but the subsequent time course is not of
the simple form shown in Fig. 1. For example, if the capacity
to eliminate a drug has been reached, there may be a plateau
or hesitation in the elimination curve before the final simple
exponential decay (Fig. 2). In that case, the fractional dimin-
ishment of the concentration, as by Eq. 4, appears to be post-

Table II. Parameter Values

Symbols
in text

equations

Corresponding
symbol in
computer

fitting program
and Table III Fig. 1 Fig. 2 Fig. 3 Fig. 4

Co CO 18.916 10.045 4.4266 0.00432
ro RFO 0.189 0.0883 26.180
k KF 0.321 0.0166 5.432
r�o RSO 0.6609 2.66 0.744
k� KS 0.075 2.774 0.400
K K 0.00374 0.069 0.0021 0.0318

Fig. 3. Simple disposition after oral intake (extended-release prod-
uct). Points digitized from Fig. 5 of Weiss (10). On them has been
superimposed the prediction from log Eq. 10. Bottom: r (Eq. 2AB)
drives decelerated exponential growth, y (Eq. 8), which in turn is
decreased by simple exponential decay R(t) (Eq. 4) to yield net loss
W(t) (Eq. 10).

Fig. 4. Biphasic disposition following oral intake (Li+ carbonate).
Top: points digitized from Fig. 16b of Kruger-Thiemer (1), after
Caldwell et al. (11). On them has been superimposed the arithmetic
prediction. Bottom: Initial upward limb is a Gompertz growth func-
tion, decelerated exponential growth, y(t), Eq. 8. Subsequent fall is
decelerated exponential decay, Eq. 3, y�(t). The net concentration of
the substance in the blood is W(t) (Eq. 11), the product of y, y�, and
the exponentially declining proportion R (Eq. 4).
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poned. The required “delay” can be accommodated by a de-
celerated exponential growth function:

�7A� dy�dt = ry where (7B� r = roexp�−k � t�

Equation 7 can be integrated to yield (Fig. 2, lower right
panel):

y = ymexp�−r�k� (8)

where ym is the theoretical level approached by y(t) in the
absence of final disposition R (see below). Equation 8 pro-
vides the delay in the plot Fig. 2. Thus, the complete process,
taking account also of the initial decelerated exponential
drop, y�, Eq. 3 (Fig. 2, lower left panel), and the final expo-
nential fall, R, Eq. 4, is the product W(t), illustrated in Fig. 2,
upper panel:

W = y� � y � R (9)

The differential equation for the entire process can be ob-
tained by differentiation of Eq. 9:

dW�dt = �dy��dt�y � R + �dy�dt� � y� � R + �dR�dt� � y� � y
= −yr� yR + yry�R = KRy�y (9A)

Thus (see Eq. 6)

−dCp�dt = Cp(r� − r + K� (9B)

Opposition (y(t) Eq. 8) to elimination during i.v. disposi-
tion (i.e., delay) develops in proportion to changing rate r, Eq.
2B. Fig. 2 is an example of delayed i.v. disposition, based on
data from Breimer (9) cited by van Rossum et al. (2). The best
fit (Eq. 9) has been superimposed on the arithmetical plot of
data points in Fig. 2A. Parameter initial estimates for Fig. 2:

Co, K, r�o: see text description relating to Fig. 1.
Enter starting values for program: k�(1) > k(0.1), r�o > ro.

With only three free parameters, the program will easily find
a tentative best fit. Then release the preliminarily fixed pa-
rameters to refine the fit.

Models for Oral Administration

Simple Oral Disposition (Fig. 3)

Subsequent to oral administration, the concentration, y,
increases in the bloodstream to the extent that the substance
is transported from the digestive tract into the blood. The
disposition can be predicted as the product of two terms:
First, the level of the substance in the blood increases as a
Gompertz growth function [Eq. 7, Fig. 3, lower left, y(t)]. As
the rate of increase goes toward zero, the theoretically pos-
sible concentration that could be reached in the bloodstream
approaches a maximum, ym, set by the dose. By rearrange-
ment of Eq. 7, the specific rate of growth is r � dy/ydt (Fig.
3, r → y); the coefficient r describes the changing specific
slope of the theoretical rise in concentration y of the sub-
stance in the blood. Second, because of the processes that
utilize or dispose of the substance, the concentration in the
blood falls as an exponentially diminishing fraction, R, of the
level in the blood, as predicted by Eq. 4 and illustrated by
panel R in Figs. 1 and 3.

The complete differential equation for simple oral dis-
position is of the same form as Eq. 5, governing i.v. disposi-
tion, except it concerns a decelerated exponential growth
rather than decay process. Thus:

W = y � R (10)

where y is defined by Eq. 8 and R by Eq. 4. The differential
equation, from Eq. 10, is:

dW�dt = Wr − Wk (10A)

In conventional symbols

dCp�dt = Cp(r − K) (10B)

i.e., during simple disposition after oral administration, the
concentration in the blood increases in proportion to chang-
ing rate r and decreases proportional to constant rate K. An
instance illustrating simple disposition following oral admin-
istration is presented in Fig. 3, based on data from Weiss (10,
Fig. 5).

Parameter initial estimates for Fig. 3:
Co, K: see text description relating to Fig. 1.

Enter starting values for program: r�o: 0.1, k: 0.1.

“Biphasic” Oral Disposition (Fig. 4)

Disposition following oral intake can be biphasic, as in
the case of Li+ carbonate, shown in Fig. 4, based on Fig. 16b
of Kruger-Thiemer (1), after Caldwell et al. (11). In this in-
stance, the steep rise in concentration (Eq. 10, Fig. 4, lower
left) is immediately followed by diminishment due to y� (Eq.
3, Fig. 4, lower right). At the same time, the slow exponential
decay in disposition is provided by R (Eq. 4), and the net
result is the product of these three terms, i.e.,

W = y � y� � R (11)

where y� here is Eq. 3, with yo � 1.
The differential equation representing biphasic oral dis-

Table III. Routines for Fitting Figs. 1–4a

//pharmkin1 (Fig. 1) //pharmkin3 (Fig. 3)
IndVars: T IndVars: T
DepVars: C DepVars: C
Params: RSO,KS,K,CO Params: RFO,KF,K,CO
RS�RSO*EXP(-KS*T) RF�RFO*EXP(-KF*T)
R�EXP(-K*T) R�EXP(-K*T)
YS�EP(-(RSO-RS)/KS) YF�EXP((RFO-RF)/KF)
C�CO*YS*R C�CO*YS*R

//pharmkin2 (Fig. 2) //pharmkin4 (Fig. 4)
IndVars: T IndVars: T
DepVars: C DepVars: C
Params: RSO,RFO,KS,KF,

K,CO
Params: RSO,RFO,KS,KF,

K,CO
RF�RFO*EXP(-KF*T) RF�RFO*EXP(-KF*T)
RS�RSO*EXP(-KS*T) RS�RSO*EXP(-KS*T)
R�EXP(-K*T) R�EXP(-K*T)
YF�EXP((RFO-RF)/KF) YF�EXP((RFO-RF)/KF)
YS�ESP(-(RSO-RS)/KS) YS�ESP(-(RSO-RS)/KS)
C�CO*YS*YF*R C�CO*YS*YF*R

a Equations written in the text and in Table I are here presented in
the symbolism suitable for the curve-fitting program SCIENTIST
(MicroMath). See Table II for symbol equivalents. Routine 1 uses
decelerated exponential decay (YS) and routine 3 uses decelerated
exponential growth (YF). In routine 2, r�o (� RSO) > ro (�RFO),
and k� (�KS) > k (�KF), whereas the reverse is the case for
routine 4, but the routines themselves are identical.
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position can be obtained from Eq. 11 in the same manner as
Eq. 9B, but

dW�dt = wr − wr� − wK (11A)

Compared to simple oral disposition (Fig. 3), biphasic (Fig. 4)
is accelerated disposition. The increased rate of disposition
proceeds proportional to changing rate r�. Thus the term -Wr�
is added to Eq. 10A.

Then,

dCp�dt = Cp(r − r� − K) (12)

Parameter initial estimates for Fig. 4:
K, r�o: see text description relating to Fig. 1.

For ro, a definition in terms of K and r�o can be helpful. At the
peak of Eq. 11, the first derivative is zero. Thus, at zero, r – r�
� K. Then, substituting and rearranging, obtain

ro = (K + r�p) exp (ktp) (13)

where rp � r�o exp(−k�tp), and tp � time to peak
For first run, enter as temporary fixed values, K, r�o, tp,

together with Eq. 13. Enter initial estimate value Co from
plot; enter k � 1, k� � 0.1.

Other Predictions

The result of multiple dosing can be predicted with an
appropriate program applied to any instance of drug disposi-
tion modeled by the Gompertz method. For example, the full
time course of concentration change that results from each
successive dose can be added to the previous profile by use of
the range variable feature in MATHCAD. Figure 5A shows
the increasing concentration in the blood during successive
i.v. injections of a drug that exhibits delayed disposition as in
Fig. 2. Amount of material in a sample is the product con-
centration times volume, so, with MATHCAD’s convenient
summing operation, the concentrations in equal successive
volumes (Fig. 5A) can be cumulated to yield (Fig. 5B) AUC,
the area under the curve, the total amount as a function of
time.

Enterohepatic Recycling

Consider primary oral disposition of the form in Fig. 6. If
enterohepatic recycling occurs, a second peak is observed fol-
lowing the first. The second wave will appear with a delay due
to the recycling time, it will broaden because of dispersion
during the recirculation, and it will be lower in amplitude than
the first wave. The recirculation time specifies the delay,
smaller k and k� will determine the dispersion, and the am-
plitude Ym will be less.

Whatever the concentration, at any moment, because of
the primary and secondary y and y� functions, the final dis-
position will be terminated by R. The measured concentra-
tion at any moment can therefore be predicted by

C = Co � (y1 � y�1 + y1 � y�2) � R (14)

Figure 6 shows a theoretical example.

Intravenous vs. Oral Disposition

Whether a drug is administered by intravenous or oral
route, the mechanism of disposition must be the same once
the drug is in the blood stream (and of unchanged identity).

The important difference is the absorption step from the gut
after oral intake. The situation is illustrated in Fig. 7, where
(middle row) the equations and constants appropriate to an
i.v. bolus (A) have been used to generate the expected result
from oral administration (B) of the same drug. In the latter
instance, a term descriptive of adsorption (Eq. 8) has been
added to the i.v. model. The top row shows the components of
the model in each instance. The bottom row shows the con-
sequence of i.v. infusion and of oral timed-release delivery. In
both the latter two instances, the amount of drug available for
disposition increases directly with time.

DISCUSSION

Note that all the various Gompertz functions are inde-
pendent of dose. The initial value yo (or Co) is essentially an

Fig. 5. Multiple dosing. A. Example of delayed disposition (Fig. 2,
Eq. 9B) is repeated at regular intervals. Successive doses are added
by use of MATHCAD range variable feature. Eq. 9B, with substitu-
tions Eq. 3, 8, 4, was written for each injection; delay in each instance
corresponded to the time of injection. The separately computed
results were then added by MATHCAD to yield the running
total. Ordinate, concentration of drug in blood. Abscissa, min. B.
Equal small increments of volume (assessed at equal small incre-
ments of time), computed as Fig. 5A, were cumulated by use of the
MATHCAD summing operation, to yield AUC, the area under the
curve of Fig. 5A. Ordinate, amount of drug in blood. Abscissa, min.
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amplifying factor in every instance. This situation contrasts
with that in which the fit is obtained as a sum of exponential
terms. For example, biphasic i.v. disposition illustrated in Fig.
4 was fit by the original author as the sum of three terms, each
with its own theoretical initial value and rate constant. By this
“peeling” technique, simple i.v. disposition requires a sepa-
rate initial value (at t � 0) for each of the two exponential
decay terms. In the Gompertz model, there is, more realisti-
cally, only one actual starting value of concentration, at t � 0,
and the rate parameters are independent of concentration.

Rates of exponential change in real processes frequently
change with time; Gompertz kinetics builds that assumption
into the differential equation describing the process. In the
present instance, two Gompertz functions, decelerated
growth and decelerated decay, together with a simple expo-
nential decay function, yield a global model of drug disposi-
tion. For convenience in the model, one function can be con-
sidered “primary,” on which the second (and third) act in a
proportionate way. For example, in the simplest i.v. instance,
the concentration in component y� in an i.v. dose initially falls
at a high rate, r�o, but r� declines at rate k� as the concentra-
tion approaches a (theoretical) plateau level, y�m (Eq. 3, Figs.
1, 2). Increasing r�o lowers the plateau; increasing k� raises it.
The plateau level is determined by the affinities of sites other
than those responsible for the simple exponential elimination.
Acting simultaneously with y, the simple exponential elimi-
nation process, R, at each moment diminishes the concentra-
tion proportionately.

A delay in the appearance of the final simple exponential
phase (Fig. 2) of i.v. disposition has been explained as due to
capacity limitation of enzymes (12). The progress toward
saturation is described by a decelerated exponential growth
function (Eq. 8, Fig. 2).

Following an oral dose, the concentration in the blood
rises along a path described by a decelerated exponential
growth function (Eq. 8, Fig. 3). Figure 3 purports to show a
simple instance in which elimination proceeds as an exponen-
tially decreasing fraction R (Eq. 4) of the level of the sub-
stance in the blood, which is otherwise growing exponentially
at a rate that decreases with time (Eq. 8). With the continuous
i.v. infusion or time-release oral dose, equal additional
amounts of a drug are made available to the blood during
successive small equal time intervals. Thus, in the absence of

removal mechanisms, the concentration in the blood would
increase. The removal mechanisms are the same in either
instance, but the disposition of the oral dose is delayed ac-
cording to the time required to pass from gut to bloodstream.
Fig. 7 (bottom) suggests how different infusion or release
rates determine the steady level of drug concentration in the
blood. The concentration in the blood increases exponentially
at decreasing rate (concentration in the infusion sets the theo-

Fig. 7. Oral vs. i.v. intake. Middle row, at left, same as in Fig. 1, Eq.
5 (see Table II for parameter values). At right, Eq. 5 has been aug-
mented by Eq. 2, with, arbitrarily, ro � 0.2, k � 0.05, to define the
uptake from oral dose. Top row, at left, components y�, R, for i.v.
disposition; at right, same, but with component y (dashed line) added
for uptake. Bottom row, prediction for continuous infusion (i.v.) or
timed release (oral). The amount of administered drug made avail-
able by these methods of delivery was in each instance assumed to
increase with time in a decelerated exponential fashion.

Fig. 6. Model for double-peaked disposition (as in enterohepatic recycling). At left, separate initial (1)
and delayed (2) peaks of concentration of drug in the blood, following oral dose. At right, the two peaks
have been summed. Peak 1 was generated with the same constants as in Fig. 1 (see also Table II). For
peak 2, the rate parameters and the maximum value were assumed to be 0.3x the values for peak 1. The
result is plotted with an arbitrary delay of 5 min.
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retical maximum) while removal proceeds at a decelerated
exponential rate.

Computer power makes possible the fitting of disposition
data with almost any number of simple exponential terms
required in a compartmental model. Number of constants is
not therefore usually an important consideration in compart-
mental model building. Nevertheless, it is well to note that the
(noncompartmental) Gompertz model is reasonably parsimo-
nious. Among the instances cited, none required more than
four independent rate constants plus an initial value of the
concentration. In contrast, if there are three rate constants in
a compartmental model, three more initial values (constants)
are required, if the model is to be complete (e.g., Fig. 4).

Pharmacokinetics presents a global picture of how sub-
stances introduced into the body are handled: a “mathemati-
cal treatment of concentration changes” (1). Those changes
proceed at rates that are not constant with time. The elabo-
rate complexities of many descriptions reflect that fact (2, 10).
In Gompertz kinetics, the rate change is written into the origi-
nal differential equations that define the processes. In the few
examples described here, the equations have been success-
fully fit directly to data, in a way that suggests the approach
can provide results that are not only rational but also exact
and easy to obtain.
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